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Introduction

Data

The process of acquiring actionable cybersecurity information for a third-party cyber risk management 
program can be extremely time consuming, taking up to months and sometimes years to obtain assessment 
completion and validation. And once the initial assessment is complete, the data can quickly become stale 
and not relevant to emerging cyberattacks. In order to provide actionable information to influence urgent 
cybersecurity decisions in a reasonable time frame, CyberGRX offers a solution which provides a dynamic 
risk profile for any company entered into our Risk Exchange. These Predictive Risk Profiles are produced by 
applying advanced machine learning to data from varied sources including self-attested assessments from our 
third-party risk Exchange, firmographic information, and outside-in scanning data from our partners. Using this 
data and machine learning leveraging a graph based structure, we are able to achieve a 0.29 Hamming Loss on 
control predictions, control coverage group score predictions within 26.5 points on a scale of 0-100 inclusive, 
as well as predictions within 1±0.09 points for all maturity scores on a scale of 0-5 inclusive.

CyberGRX has successfully gathered over 10,000 completed cybersecurity assessments from Exchange 
members. This data was further cleaned and reduced to create a set of roughly over 1,000 combined data 
points for training a model. The standard 80/20 split was used for creating the training and testing sets. The 
information in these assessments are grouped covering strategic, operational, core, management, and privacy 
controls of a member’s cybersecurity program. The maturity level of each control family is also considered 
through people, process, and technology. This information is primarily binary information, with 72 being ternary 
and 35 being senary, confirming the existence of a cybersecurity control in place under the member’s program 
and can range upwards of 250 in total at the CyberGRX Tier 2 Assessment level . These controls are the 
response variables of interest in a traditional predictor-response machine learning model.

The predictor variables were chosen from a collection of external datasets with the importance of leveraging 
company firmographics such as industry, revenue, size, age, and online popularity for maturity and selected 
controls. Cybersecurity information is provided into the model through breach monitoring relating to leaked 
passwords, product vulnerabilities, policy violations, domain weaknesses, etc. This is paired with numerical 
ratings for vulnerability severity such as web security, software patching, and email security collected through 
automated network scanning.

  Tier 2 assessments allow for the confirmation of 
certain cybersecurity controls but do not consider 
the effectiveness of these controls.

Table 1: 
External data used as predictor variables in 
the model. Network scanning is a family of 
several variables that describe the security 
of a company at the domain accessible level. 
Breach monitoring is a family of several 
variables that are gathered from the dark web 
as well as breach signals and datasets.

TABLE 1

Feature Data Type

Industry Factor

Revenue Factor

Company Size Factor

Age Integer

Online Popularity Integer

Network Scanning Float

Breach Monitoring Factor

1

1
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Model
From a modelling perspective, we consider each assessment control a random variable that will be 
observed once the Exchange member has completed the assessment. With this in mind, the goal 
was to model the joint probability distribution of assessment answers given an Exchange member’s 
predictor variables. As stated, the controls are primarily variables with a binomial distribution over 
both outcomes, with few being multinomial over three outcomes, while the maturity questions are 
multinomial over six outcomes. For illustration purposes, if we were to consider 200 independent 
binary response variables, there are               , approximately 1.6 • 10^60, parameters   to determine 
for the joint distribution. Along with the sheer number of parameters to fit, the physical limitations 
of storing the parameters in memory is also a blocker to modelling purely off the joint distribution. 
Since cybersecurity controls tend to correlate with one another given the context of the question in 
the assessment, we can reduce the complexity of fitting a large number of parameters by leveraging 
conditional independence between response variables while maintaining correlations between some 
of them. For these reasons, a Bayesian network was utilized to model the data. 

The underlying structure of a Bayesian network is a graph where each node represents a random 
variable and is connected to other nodes through conditional dependence, i.e. the outcome of one 
variable depends on one or more other variables. This graph structure is therefore directed and by 
design must be acyclic when constructing the conditional dependencies. This structure allows for 
random variables to have local distributions by only considering the variables they are dependent on, 
known as parent variables. 

Consider two random variables X,Y in a joint probability space of possible outcomes. The chain rule 
of conditional probability states the probability distribution over X,Y, denoted by P(X,Y), can be written 
as P(X,Y) = P(X)P(Y|X) where P(Y|X) is the conditional probability of Y given X. This rule can then be 
extended to a Bayesian network structure, known as the chain rule for Bayesian networks, where for 
any number of variables X_n  for n = 1,2,3,... the joint probability distribution can be written as 

where the right hand side of the equation is the multiplication of all the conditional probabilities from 
1 to n in the graph for a potential outcome only considering the parents of each variable. When a 
variable has no parents, it is simply the marginal distribution P(X_i). This factorization of the joint 
probability distribution allows for the parameter space to reduce in size to at most n • 2^k where n is 
the number of variables and k is the largest number of parents for a variable. Usually, variables only 
depend on a very small number of parents for their conditional probabilities, making the previous 
exponential parameter space linear in the variables.

In addition to parameter reduction, Bayesian networks have several properties that are  advantageous 
to modelling assessment data. First, due to the statistical nature of the model, they are explainable 
compared to other popular models that fit high dimensional data. Expert domain knowledge can 
also be included as prior distributions over the response variables. When performing inference, the 
model still produces predictions for the response variables even if there is missing data in the input. 
Finally, the theory behind Bayesian networks has been developed over decades and their application to 
datasets with large amounts of binary variables is well known.

2

2 The 1 is subtracted from the exponential term since the last probability is fully determined by all the probabilities before it.
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Training
Training a Bayesian network is a two step process: learning the structure of the dependencies, and fitting 
the parameters of the variables. 

There are several algorithms available to learn the structure of the network which categorize into three 
types: constraint-based, score-based, and hybrid algorithms. In this development we used a popular 
score-based algorithm called the hill-climbing (HC) algorithm. HC finds a local optimum by searching the 
possible orientations of edges connecting one variable to another and assigning a score to the potential 
structure. The Bayesian Information Criterion (BIC) was used to score the structures, defined as: 

BIC = p•ln(n)-2•ln(P(X|θ ,M))

where ln(•) is the natural logarithm, p is the number of parameters in the model and n is the number of 
observations in the data. P(X|θ,M) , known as the likelihood function, is the probability of observing the 
data X given the estimated parameter values θ and the model M, i.e. the parameters that fit the data the 
best. The BIC score penalizes large amounts of parameters to the model while maximizing the likelihood 
function. Penalizing large parameters prevents the complexity of the model from getting too large which 
may result in overfitting the training data leading to poor performance on unseen data. The HC algorithm 
will iteratively search for a maximum BIC score until either the pre-defined maximum number of iterations 
is reached or increases to the score are no longer found.

When searching for a structure that describes the (in)dependencies of the underlying distribution, a 
challenge that needed to be overcome is independence equivalence, or I-equivalence. I-equivalence is the 
property that two structures with different directed edges still encode the conditional independencies of 
the underlying distribution given the data. Since two different graphs can encode the same conditional 
independencies of the variables, there is nothing to say that one is better than the other if the only 
thing different is the direction of the edges. One way to mitigate this is to define edges before starting 
the structure search. With the assistance of cybersecurity professionals at CyberGRX, several of the 
input variables were manually mapped to assessment controls in order to force dependencies between 
variables and reduce the search space for the structure. Examples of these mappings are in Figure 1 
where several of the inputs were mapped to selected variables in the graph.

Figure 1.1: Email security input 
mapped to two controls

Figure 1.2: web app security input 
mapped to four controls

Figure 1.3: software patching input mapped to six controls; four included in the image.

Figure 1: 
Screenshots from 
the structure of the 
model where the 
input nodes were 
manually mapped.

FIGURE 1

4
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Once the structure is found, the conditional dependencies between the variables are now 
known and we can fit the parameters of the variables in the graph using the training data. The 
probabilities of the outcomes are stored in a Conditional Probability Distribution (CPD) table that 
captures the local distribution of a variable given its parents in a matrix of dimension 

where the |•| denotes the number of outcomes, or cardinality, for the variable between the pipes.

A prior probability distribution was included over the outcomes of the variables to smooth out the 
bias in the assessment answers. The Bayesian Dirichlet equivalent uniform (BDeu) distribution 
was used for two reasons; it makes computation of the distribution easier and it assumes a 
uniform distribution over the outcomes a priori.  Before fitting a variable in the network with the 
data, we use a standard count for the prior distribution that is uniform across all outcomes of the 
CPD. The counts assigned to the outcomes are calculated from the equation

where α_ij is the value we will set to the ith row and jth column entries of the CPD, q is the 
equivalent sample size hyperparameter, and the denominator in the equation is simply the number 
of entries the CPD table has. Since all the α_ij will be equivalent, this prior distribution is considered 
a uniform distribution across the CPD.

Since the Dirichlet prior is a conjugate prior, adjusting the probabilities is a relatively simple 
procedure. A conjugate prior is a distribution that will be the same distribution after including 
information from observations. To fit the probability of an outcome in the CPD using the data, we 
fix the outcome of the parents and add the normalized frequency of the variable’s outcome to the 
α_ij. An example of a fitted CPD table is shown in Table 2 where the columns are the conditional 
distributions that depend on the outcome of the parents.

Parent 1 Parent 1 (0) Parent 1 (0) Parent 1 (1) Parent 1 (1)

Parent 2 Parent 2 (0) Parent 2 (1) Parent 2 (0) Parent 2(1)

Variable (0) 0.86 0.25 0.4 0.7

Variable (1) 0.14 0.75 0.6 0.3

Table 2: 
An example of a CPD table where the columns are the conditional probabilities of the 
variable given the observed outcomes of the parents shown in parenthesis.

TABLE 2

5
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Querying
In order to make predictions to the assessment answers given a company’s input data, or evidence, 
we must query the Bayesian network for inference on those variables. Several methods exist for 
generating outcomes on the response variables. These include exact inference methods to compute 
the joint probability given the structure of the graph, particle based methods that generate data points 
given the evidence, and maximum a posteriori (MAP) queries which return outcomes that maximize 
the probability of observing the evidence. We use particle based methods in the form of random 
sampling from the Bayesian network to produce more robust analysis on the potential assessment 
outcomes. Given enough samples, we can approximate the true distribution. In particular, likelihood-
weighted sampling was used for the approximation.

Likelihood-weighted sampling (LW) provides the ability to fix the input variables and adjust the CPDs of 
the random variables in order to fit the event of observing the evidence. LW is a subset of a larger form 
of sampling called Importance Sampling where the topological ordering  of the graph determines the 
order of importance to sample the variables. Sampling a variable consists of using the CPD column 
with the parent outcomes fixed to be the observations of the evidence and then drawing an outcome 
from that CPD with probabilities corresponding to those of the selected columns. The results of the 
sampled variables, being parents, in that order feed into the CPDs of the variables that depend on 
them, known as children, until the end of the ordering is reached. This process is then repeated for a 
predefined number of times to produce the same number of potential assessments.

The weighting strategy in LW stems from rejection sampling where the Bayesian network is sampled 
in the topological ordering without evidence. The samples would then be rejected if they did not 
match the evidence observations. This can become quite inefficient if the probability of observing the 
evidence is low. In LW, the weighting adjusts the significance of the sample to reflect the likelihood of 
the observed evidence’s probability given its parents. 

In order to process a company for results, it must have a set of possible assessments to analyze 
given the observed predictor variables for that company. A sample size of 1000 was chosen for LW 
since it was both performative in time to completion as well as accuracy in approximation. It takes 
roughly 30 seconds to score and analyze a block of 1000 sampled assessments for a company. This 
computation is then distributed to run in parallel for multiple companies to obtain results.

3

3 Topological ordering refers to listing the nodes in a directed graph such that nodes that have 
parents or children are not listed before their parents and are not listed after their children.
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Predictive Results Calculations
In order to provide insights into a company’s cybersecurity program, it is necessary to remain 
consistent with the already established metrics and summaries provided from self-assessed 
assessments. When an Exchange member at CyberGRX completes an assessment, scores are 
generated from their answers to provide an overview of the level of risk in their cybersecurity program. 
These include coverage of the five control groups listed at the beginning of this document, maturity 
group coverage, and a gaps analysis to identify weaknesses through the MITRE ATT&CK® framework. 
To estimate the true scores, we chose to take the approach of describing the possible distribution 
of scores for a company by querying the possible assessments from the Bayesian network thus 
producing what we call a sample block. An illustration for clarity of the sample block is included in 
Table 3. This provides a more robust view of the possibilities along with building a confidence score 
around the distribution of scores.

The process to produce coverage and maturity scores at the group level begins by iterating through 
each assessment in the sample block and scoring that possible assessment for each group. Once all 
the sampled assessments have been scored, a histogram per group is created with the scores. Having 
a histogram allows us to display the median as the expected value of the scores and a confidence  
around the expected value for the control coverage. 

The maturity coverage is displayed as a range of scores: low, median, and high. Where the median is 
the expected value of the score, and the low and high scores cover a margin of error for the estimate.

Each sampled assessment produces a list of ranked gaps from the MITRE ATT&CK® analysis. 
Each question is then scored by a point accumulation system based on its position in each list. The 
accumulation of these points over all lists is then used to rerank the union of all the gaps outputs in 
order to produce the top five across sampled assessments with an accompanying confidence  score.

4

4

5

5

The confidence for the coverage scores is the probability that the true score will 
not deviate more than a proprietary margin of error from the expected value.

The confidence for each of the five gaps is calculated by their probability 
of not being in place within the set of all sampled assessments.

Outcomes Question 1 Question 2 ... Question 251

Assessment 1 Yes Yes ... No

Assessment 2 Yes Yes ... Yes

... ... ... ... ...

Assessment 1000 No Yes ... No

Table 3: 
A sample block is produced for each individual company with 1000 possible assessments in the block.

TABLE 3
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Performance Results
Performance results for the model were separated into coverage scoring results and the maturity 
scoring results. Although the coverage can have Not Applicable outcomes, the modelling problem is 
a multi-label problem. On the other hand, the modelling problem for the maturity is considered multi-
class and multi-label. The outcomes range from 0-5 making it multi-class and there are 28 different 
maturity questions making it multi-label thus they cannot be considered together.

Coverage predictions were scored using the Mean Absolute Error (MAE) which describes the average 
distance of the errors from the actual scores. To calculate the MAE we used the equation 

where n is the size of the test set, y is the true group score for an assessment and ŷ is the predicted 

score. The right hand side with the       symbol states the summation of all the distances in the 

samples from the true score. The |•| in this case denote taking the absolute value of the difference. 
This only considers how far an estimate was from the truth without having effects from the sign of 
that difference. The value after performing the summation is then normalized using the size of the test 
set by multiplying 1/n. The MAE for each coverage group is shown in the first column of Table 4.

Since each prediction of coverage is accompanied by a confidence level, we measured how often that 
confidence is correct in indicating whether or not the true score is captured within a proprietary margin 
of error . A cutoff of 50% on the probability of capturing the true score within the margin of error was 
used. This was calculated using the equation

where    is the proprietary margin of error for the estimate and c is the confidence that the estimate is 
contained within that margin. The                                  indicates to add 1 to the summation if the true 
score is within the margin of error and the confidence associated with capturing the true score was at 
least 50% and if otherwise to add 0. The results are shown in the second column of Table 4.

6

6 The margin of error is considered a hyperparameter in this work 
and therefore different models will require a different margin.
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Since predicting coverage is a binary multi-label classification problem, we can use the Hamming 
Loss function to score our model for performance on accuracy. The Hamming Loss reflects 
the number of labels predicted wrong over the total number of labels. Since the Hamming Loss 
measures the mislabelling rate, a lower value for the Hamming loss is preferred over a higher one. 
The metric ranges in values between 0-1 and is calculated as follows.

For measuring the performance of the maturity question predictions, we used the MAE to see how far 
the estimate was from the true value as well as the true value being captured within the margin of error 
for each group. Note the maturity questions range between 0 and 5, instead of 0-100, which is why the 
MAE are much lower compared to the controls coverage. Table 5 shows the results of these metrics.

Where |N|,|L| are the number of samples and the number of labels we are trying to predict 
respectively. The values           are the true label and predicted label for the ith assessment on the 
jth control. The                   states we will add 1 if we missed the label, i.e.               and 0 otherwise. 
The Hamming Loss was calculated per group as well as over all groups and is shown in the third 
column of Table 4.

Mean Absolute Error 
[0-100]

Confidence Precision 
[0-1]

Hamming Loss 
[1-0]

Strategic 21.31 0.96 0.24

Core 27.15 1.0 0.28

Operational 16.77 1.0 0.3

Management 22.06 0.95 0.29

All Groups Above - - 0.29

Privacy 2.5 1.0 0.025

Mean Absolute Error 
[0-5]

Confidence Precision 
[0-1]

Strategic Maturity 0.96 0.41

Core Maturity 0.97 0.37

Operational Maturity 0.9 0.39

Managegment Maturity 1.06 0.36

Privacy Maturity 1.08 0.4

Table 4: 
Mean absolute error on a scale of 0-100, confidence precision of the true score per group 
within the margin of error given confidence of 50% or more, and hamming loss.

Table 5: 
Mean absolute error and 
confidence precision of 
the true score within the 
margin of error at 50% 
confidence. Maturity is 
scored on a scale of 0-5.

TABLE 4

TABLE 5

9
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Since residual risk is an output of the scoring, we were able to measure the predicted overall residual 
risk compared to the true overall residual risk. The residual risk is a way to quantify the reduction in 
risk from having certain cybersecurity controls in place, thus reducing the inherent risk of the threat 
landscape to a company. We use the MAE as a measure of how far we are from estimating the 
residual risk from the true residual risk in the test set. The Confidence Precision is also used to see 
how often the true residual risk is captured within the margin of error. An important measurement 
that we have not discussed yet is the Lower Bound Cutoff which is a way to measure how often the 
true overall residual risk is kept above the predicted lower bound. This is important to note because 
the lower the overall residual risk, the less risk a company poses to their customer(s) and not keeping 
the true overall residual risk above a lower bound dilutes the validity of the prediction. The results are 
shown in Table 6.

By design of the system, there will always be five predicted gaps outputs with an accompanying 
confidence level. The set of five predicted gaps can contain both high gaps and low gaps . Analytics 
from scoring an attested assessment can output zero or more gaps. For this reason we measured 
the performance of the predicted gaps primarily through the intersection of the predicted set and 
the attested set. If the predicted set intersects at all with a non-empty attested set then that will 
contribute to the score. Table 7 has the rate of intersection for the gaps. As shown, 43% of the time 
do predicted gaps intersect with the attested gaps. Predicted high gaps, or gaps with a confidence of 
40% or more, intersect with the attested gaps 26% of the time.

MAE 
 [0-100]

Confidence Precision 
[0-1]

Lower Bound Cutoff 
[1-0]

Overall Residual Risk 8.83 0.33 0.71

Gap Intersection Rate
[0-1]

High Gap Intersection Rate 
[0-1]

Predicted Gaps 0.43 0.26

Table 6: 
The overall residual risk measured through MAE, high confidence precision, and Lower Bound Indication

Table 7: 
Predictive analytics will always output five gaps regardless of the attested assessment. The gap intersection rate is 
a measure of the intersection between predicted and attested gaps. The high gap intersection rate is similar with the 
condition of only predicted gaps with an accompanying confidence level of ≥40% are considered.

TABLE 6

TABLE 7

7

7

High gaps are missing controls which pose a high level of risk from MITRE ATT&CK® techniques. Low gaps are controls 
that are in place but still pose a high level of risk without understanding their implementation effectiveness.
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Throughout the development of this model we identified several areas of improvement. The first is 
centering on a structure that has the most information propagation without overwhelming variables 
with an excessive amount of parents. Although the HC algorithm allows us to search for a structure 
that optimizes the BIC score, further reducing the search space is necessary.

More inputs with high amounts of predictive power would adjust the imbalance in the predictors 
to response ratio. Continuously exploring and expanding the input space would allow to reduce the 
error in predicting an assessment.

Different sampling methods are of interest to experiment with. There are several algorithms that yield 
less error in less time per sample than likelihood weighted sampling.

PERFORMANCE CHANGES

Average F1 Score of 0.3
Note: F1 is a measurement of true positive and false positive rates. The closer to 1.0 we are, the less we have.

Future Work

Model v1.1 Release Notes

Addendum

Model v1.1 was released June 24, 2022.

Predictive Data Methodology
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F1% improvement from previous model

Assessment Accuracy

Sub-control Accuracy 

Median: 6%

Max: 83%

Lowest quartile (25th) is 58% accurate.

Median is 68% accurate.  

Model is up to 91% accurate.

25% of sub-controls are 80% accurate.

Half of the sub-controls are 75% accurate.

We are up to 95% accurate on specific sub-controls.



Questions? Reach out to your 
CyberGRX Account Manager 

for further information
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Hamming Loss Group 1 Group 2 Group 3 Group 4 Overall

v1.0 0.14 0.28 0.2 0.22 0.21

v1.1 0.14 0.37 0.23 0.24 0.24

TABLE 8

Recall Hamming Loss measures the mislabelling rate, a lower value for the Hamming loss is preferred over a 
higher one.  

Upon deeper analysis, we found that our external data feed scores dropped over time for multiple companies 
which pulled down our coverage predictions, subsequently scoring them lower than their historical attested 
results. This led to a larger Hamming loss score.

This strategy improves development time by reducing the data 
preprocessing to find the best thresholds to the continuous features. In 

this way, 82 assessment question predictions were improved.

Architecture Changes

Decision Trees were trained to improve 
predictions for perimeter scanning 
mapped subcontrols and Random 
Forest models for maturity question 
predictions. These helper models, 
or SubModels, are tuned to split the 
perimeter scanning ratings using 
an internal decision function for 
minimizing the mislabelling probability. 
The SubModel predictions are then 
passed to the graph model to initialize 
the internal sampling for inference.


